Solution Sets in DCOPs and Graphical Games
نویسندگان
چکیده
A distributed constraint optimization problem (DCOP) is a formalism that captures the rewards and costs of local interactions within a team of agents, each of whom is choosing an individual action. When rapidly selecting a single joint action for a team, we typically solve DCOPs (often using locally optimal algorithms) to generate a single solution. However, in scenarios where a set of joint actions (i.e. a set of assignments to a DCOP) is to be generated, metrics are needed to help appropriately select this set and efficiently allocate resources for the joint actions in the set. To address this need, we introduce k-optimality, a metric that captures the desirable properties of diversity and relative quality of a set of locally-optimal solutions using a parameter that can be tuned based on the level of these properties required. To achieve effective resource allocation for this set, we introduce several upper bounds on the cardinalities of k-optimal joint action sets. These bounds are computable in constant time if we ignore the graph structure, but tighter, graphbased bounds are feasible with higher computation cost. Bounds help choose the appropriate level of k-optimality for settings with fixed resources and help determine appropriate resource allocation for settings where a fixed level of k-optimality is desired. In addition, our bounds for a 1-optimal joint action set for a DCOP also apply to the number of pure-strategy Nash equilibria in a graphical game of noncooperative agents.
منابع مشابه
Solution Sets for DCOPs and Graphical Games: Metrics and Bounds
A distributed constraint optimization problem (DCOP) is a formalism that captures the rewards and costs of local interactions within a team of agents, each of whom is choosing an individual action. When rapidly selecting a single joint action for a team, we typically solve DCOPs (often using locally optimal algorithms) to generate a single solution. However, in scenarios where a set of joint ac...
متن کاملDCOP Games for Multi-agent Coordination
Many challenges in multi-agent coordination can be modeled as distributed constraint optimization problems (DCOPs) but complete algorithms do not scale well nor respond effectively to dynamic or anytime environments. We introduce a transformation of DCOPs into graphical games that allows us to devise and analyze algorithms based on local utility and prove the monotonicity property of a class of...
متن کاملFinding a Nash Equilibrium by Asynchronous Backtracking
Graphical Games are a succinct representation of multi agent interactions in which each participant interacts with a limited number of other agents. The model resembles Distributed Constraint Optimization Problems (DCOPs) including agents, variables, and values (strategies). However, unlike distributed constraints, local interactions of Graphical Games take the form of small strategic games and...
متن کاملDistributed Algorithms for DCOP: A Graphical-Game-Based Approach
This paper addresses the application of distributed constraint optimization problems (DCOPs) to large-scale dynamic environments. We introduce a decomposition of DCOP into a graphical game and investigate the evolution of various stochastic and deterministic algorithms. We also develop techniques that allow for coordinated negotiation while maintaining distributed control of variables. We prove...
متن کاملA Family of Graphical-Game-Based Algorithms for Distributed Constraint Optimization Problems
This paper addresses the application of distributed constraint optimization problems (DCOPs) to large-scale dynamic environments. We introduce a decomposition of DCOP into a graphical game and investigate the evolution of various stochastic and deterministic algorithms. We also develop techniques that allow for coordinated negotiation while maintaining distributed control of variables. We prove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006